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Abstrsa. In Jahn-Teller (JT) systems with N equivalent sites on which elearons (holes) 
may localize, one encounters the interaction of many elenranic states through JT vibrations. 
The total multi-dimensional Hamiltonian is reduced to N equivalent Hamiltonians of low 
dimension and distorted symmetry. Explicit examples are presented and general implica- 
tions discussed. 

The Jahn-Teller (IT) effect [ 13 describes the interaction of degenerate electronic states 
through non-totally symmetric, usually degenerate, nuclear modes. This effect plays a 
central role in explaining the structure and dynamics of solids and molecules in 
degenerate electronic states [2,3]. The well known IT Hamiltonian which linearly 
couples the two components of an electronic state of, for instance, E symmetry 
reads [2,4] 

where x and y denote the two components of the degenerate coupling vibrational 
coordinate with momenta p x  and p y  and Ho= w(p:+p:+x ’+y2) /2 ,  where w is the 
unperturbed vibrational frequency. 1 stands for a unit matrix, K is the JT coupling 
constant and EE is the electronic energy. 

Although the Hamiltonian ( I )  has a simple appearance, it cannot be solved in 
closed form. In particular, the electronic transformation which brings the matrix ( I )  
into diagonal form explicitly depends on the coordinates x and y. Consequently, the 
IT effect describes non-adiabatic effects which can have a severe impact on the dynamics 
of the system as demonstrated in many cases [2-51. Another consequence of (1) is the 
appearance of a now very popular geometrical phase factor [6] in the adiabatic 
electronic states [4,7,8]. We should mention that quadratic or higher coupling terms 
not shown in (1) may also contribute [2,9]. Within the approximations of (1) there is 
a constant of the motion (vibronic angular momentum) and, correspondingly, a 
rotational symmetry of the adiabatic potential energy surfaces. 

In the following we wish to point out and to demonstrate that the IT Hamiltonian 
may take a less symmetric form in composite systems. Here we have in mind systems 
the wavefunction of which i s to  a very good approximation a direct product 1L)OID) 
of a wavefunction IL) describing localized (quasi)particles and ID) describing the 
remaining ones. Examples are the core electrons which constitute IL) and the valence 
electrons described by ID), or localized magnetic impurities in a solid (or a cluster) 
and the delocalized band electrons. A IT effect is supposed to be operative in the 
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subspace of the wavefunctions ID) while the localization in the subspace IL) can be 
cast into the language of pSeudO-JT theory [lo, 51 with a special relation between the 
coupling constants. Separate transformations on IL) and ID) then help to considerably 
simplify the problem. We start with the subspace of wavefunctions IL) for which new 
results will also be derived. 

To keep the discussion as transparent as possible we illustrate our general arguments 
with the aid of a specific point group: D,, with three equivalent centres. An electron 
(or hole) localized on these centres can be either in a degenerate E or in a totally 
symmetric A, state, and the Hamiltonian (2) applies 

-Ax E ,  

where A is the pseudo-JT coupling constant. Because of the localization, the energies 
E ,  and EA,  will be nearly identical. For instance, the core fluorine electrons of BF, 
constitute E and A, core orbitals whose orbital energies are separated by less than 
0.0007eV [ l l ]  and we may put E,= EAL for all practical purposes. In analogy one 
may derive relations between the IT and pSeUdO-JT coupling constants. Requiring that 
the localized electronic states remain decoupled also for finite nuclear displacements, 
we find A = f i ~  in our case. Similar relations hold forthe quadratic and higher coupling 
constants not shown in (2). 

Inserting E = E,= E,, and A = AK into the matrix Hamiltonian (2) we may now 
diagonalize this electronic matrix by a transformation which is independent of the 
nuclear coordinates. T h e  transformed Hamiltonian S,HS: is diagonal with elements 
H,, i = 1,2,3.  It is sufficient to know one of these operators, for instance, 

HI = E + Ho+2KX+ 8+(x2+y2)+  8 _ ( X 2 - y 2 ) .  (3) 

The other two operators in nuclear space H2 and H3 can be obtained from (3) by 
rotating (x, y) by 2 ~ / 3  and 4 ~ 1 3 ,  respectively. Note that Ho is invariant under rotations. 
For completeness, the quadratic JT coupling constants 8, and 8- have been taken into 
account in the derivation of the H ,  although they have not been shown explicitly in 
(1) and (2). Higher coupling constants can be included analogously. 

The three operators H ,  are the Hamiltonians for the nuclear motion in the trans- 
formed electronic states obtained by application of SL. Inspection ofthis transformation 
( S ,  is determined from 3, by normalizing the columns) 

s,= - [ ' : : I  -1 0 -2 1 (4) 

reveals that the original electronic states of E and A, symmetry have been transformed 
to three symmetry broken states, where in each of these states the electron (or hole) is 
localized on a single site. In our case the pseudo-IT Hamiltonian (2) thus describes 
dynamical on-site localization. The transformation S, is universal for the D3h point 
group with three equivalent sites. Similarly simple transformations prevail for other 
point groups and/or a different number of equivalent sites. The dimension N of the 
pseudo-JT Hamiltonian will always be the number of the equivalent sites and the On-Site 
localization transformation S, solves the problem and leads to N one-dimensional 



Letter to the Editor L313 

Hamiltonians H,. For example, N = 6 for benzene (C,H,) and the pseudo-JT Hamil- 
tonian describes the coupling of six states: two doubly-degenerate E and two non- 
degenerate A states. All the Hi can be determined from one of them by simple symmetry 
operations. Related symmetry breaking in connection with on-site localization may 
also occur in non-JT systems [12,17]. 

The on-site pseudo-JT Hamiltonian H, in (3) describes two harmonic oscillators. 
Interestingly, one of them is shifted along one component of the degenerate nuclear 
mode. The degeneracy ofthe nuclear of vibration is lifted and the vibrational frequencies 
are different along the x and y directions. In particular, because of the electronic 
symmetry breaking discussed above the adiabatic potential energy surfaces of the H ,  
are analytic at the origin, in contrast to those of the JT Hamiltonian [Z]. A typical 
contour plot of the potential energy surfaces of our H is shown in figure 1. In spite 
of the fact that three surfaces intersect (this usually leads to a breakdown of the 
Born-Oppenheimer approximation), the nuclear motion on them is decoupled as 
demonstrated above. Every surface corresponds to one of the H , .  

,>I \ \ \  I 

Figure 1. The contour plot of the potential energy surfaces of H in (2) for D,, systems 
with localized electrons or, equivalently, of the H, in (3). The solid lines are the lines of 
intersection. 

The spectrum of H in (2) for our systems is simpler than that of the JT spectrum 
of (1) although the former describes the interaction of three electronic states. Being a 
shifted oscillator, the Hamiltonian (3) may give rise to strong excitations of quanta of 
the JT vibration which can lead to a broad spectrum. This may explain the hitherto 
unexplained observations [13] that the fluorine Is lines in XPS experiments of BF, and 
CF, are much broader than the boron and carbon Is lines. In the former case the JT 

vibration is inevitably activated via the above discussed on-site pseudo-IT effect. 
Until now we have considered the situation where the JT effect is due to the electrons 

(holes) in the IL) manifold. The on-site localization principle found for these  systems 
prepares the ground for the-treatment of the more complex problem of electronic 
excitations between the IL) and ID) manifolds. Here, we may discern between two 
types of excitations. If the excited structure in ID) is non-degenerate, the excitation 
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problem becomes formally identical to the one discussed above and needs no further 
discussion. If, on the other hand, the excited state in 10) is degenerate as indicated 
above, the vibronic coupling problem becomes much more complex as more states are 
involved. Lht us return to our D,, example with three equivalent centres. The excitation 
of the vibronically coupling A, and E states of IL) to, for example, an A, state of ID) 
leads again to the same pSeUdO-JT problem as in (2) because of the symmetry product 
rules E O A ,  = E and A , O A , = A , .  The specific values of the coupling constants 
A = AK and energies E ,  = E A ,  of course, depend on the properties of the A, state of 
the ID) subsystem. 

The excitation of the A, and E states of IL) to an E state of ID) gives rise to six 
states which are all vibronically coupled to each other. Using the product rules 
E O E = E + A ,  + A 2  and A,  0 E = E, we have readily identified the interacting states. 
In analogy to (2) we may now construct our pseudo-JT Hamiltonian for these states. 
Using symmetry arguments [2] we arrive at 

H = H , J +  

where the subscripts on the coupling constants help to identify the states (the E state 
arising from E O E has the subscript 1). In analogy to the discussion below equation 
(2) we can derive relations among the coupling constants and energies. Of course, all 
energies are equal. The seven coupling constants can be expressed by two only: 

K U = ~ Z = X Z  K ,  = o , A ,  = K 2 + K 1 2  X I  = K 2 -  K12 

In spite of the above simplifications the reduction of the six-dimensional Hamil- 
tonian ( 5 )  seems complicated. In benzene, for instance, the analogous H will be 
12-dimensional and one can easily conceive of even more involved examples. We note, 
however, that the reduction can be done in two steps. The electronic states which span 
the Hamiltonian H transform according to the irreducible symmetry representations 
of the point group and may thus not necessarily have the desired form iL)OlD), but 
a simple transformation RLD can bring them into this form. More details will be given 
elsewhere [18]. The final transformation T is determined by applying RLD followed 
by the on-site localization transformation SL. The Hamiltonian H is reduced by the 
transformation THT' to N Hamiltonians H, ,  i = 1,2 , .  . . , N, of dimension n, where n 
is the degree of degeneracy of the excited state in ID). In the case of our explicit D,, 
example, N = 3 and n = 2. Again, it is sufficient to know' one of the H,  : 

The other two Hamiltonians can be obtained by rotating (x ,  y )  as well as the electronic 
states in (6) by 2v/3  and 4v/3. The result (6) can be understood using our result (3). 
The Hamiltonian ( 5 )  and its reduction shed light on the origin of the underlying 
vibronic coupling problem and make clear how K> and K , ~  are to be computed in 
actual cases. 
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The reduction of multi-dimensional Hamiltonians to equivalent Hamiltonians of 
low dimension is the central result of this work. The Hamiltonian (6) describes the 
complicated vihronic motion in the excited state. The symmetry of (6) is lower than 
that of the IT problem (1) because of the existence of K , ~ :  putting K , ~ =  0 leads to a 
pure JT effect. The symmetry breaking which originates from the localization of the 
electrons (holes) in the subsystem IL) is also reflected in the adiabatic potential energy 
surfaces of (6) 

drawn in figure 2. Unlike the surfaces of (l) ,  V, are shifted in the x direction and are 
not rotationally symmetric in x and y. The spectrum of HI is expected to be very 
different from a JT spectrum and to exhibit richer structures. 

Figure 2. The potential energy surfaces of the distorted JT Hamiltonian ( 6 ) .  

In a JT system with N equivalent sites on which electrons (holes) may localize one 
encounters the interaction of many electronic states through the JT vibrations. It is 
demonstrated that the total Hamiltonian can be reduced to  N equivalent Hamiltonians 
of low dimension n, where n is the degree of degeneracy of the state of the non-localized 
electrons. It is only by this reduction that the complicated multi-state vibronic coupling 
problem becomes tractable, in particular when several JT vibrations are active. 

The resulting N Hamiltonians describe the complex vibronic dynamics of the 
system and exhibit a lower symmetry than related JT Hamiltonians. Their spectra are 

encountered in other low symmetry vibronic coupling cases [14]. 
The present theory is applicable also in the case where several JT and totally 

symmetric vibrations are active. In particular, the latter vibrations decouple [12] and 
can be considered separately. 

One specific application which suggests itself is K-shell excitation spectroscopy 
where a core electron is excited to a vacant orbital. Recent experiments [15-171 on 
adsorbed and gas phase molecules have revealed interesting vibronic structures which 
are difficult to explain without theory [17]. If the molecule is IT active and, in  particular, 
the vacant orbital degenerate, the present theory provides the relevant working 
equations and makes the computations of the spectra feasible. 
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